Faculty of Engineering Management

STUDY MODULE D	ESCRIPTION FORM		
Name of the module/subject		Code	
Production flow steering	ı	1011102331011115121	
Field of study	Profile of study	Year /Semester	
	(general academic, practical)	_	
Engineering Management - Full-time studies -	(brak)	2/3	
Elective path/specialty	Subject offered in:	Course (compulsory, elective)	
Enterprise Management	Polish	elective	
Cycle of study:	Form of study (full-time,part-time)		
Second-cycle studies	full-time		
No. of hours		No. of credits	
Lecture: 15 Classes: - Laboratory: -	Project/seminars:	15 3	
Status of the course in the study program (Basic, major, other) (university-wide, from another field)			
(brak)	(brak)		
Education areas and fields of science and art		ECTS distribution (number and %)	
technical sciences		3 100%	
Responsible for subject / lecturer: Responsible for subject / lecturer:		t / lecturer:	
r inż. Ireneusz Gania dr inż. Ireneusz Gania mail: ireneusz.gania@put.poznan.pl email: ireneusz.gania@put.poznan.pl		poznan.pl	

tel. 616653385

Wydział Inżynierii Zarządzania ul. Strzelecka 11 60-965 Poznań

tel. 616653385

Wydział Inżynierii Zarządzania ul. Strzelecka 11 60-965 Poznań

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	The student knows the basic concepts related to the management of production.	
2	Skills	The student has the ability to perceive, association, interpretation of the phenomena occurring in the sphere of production	
3	Social competencies	The student understands and is prepared to take on social responsibility for decisions related to the design of production systems in Polish enterprises of mechanical engineering	

Assumptions and objectives of the course:

Acquainting students with the nature and principles of controlling the flow of production. The students mastery of basic skills in controlling the flow of production.

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. He has knowledge of the relationships found in corporations and holding companies, and in-depth knowledge of organizational relationships that exist between organizational units of the company [K2A_W05]
- 2. He knows in depth the methods and tools of information modeling [K2A_W08]
- 3. He knows the methods and tools for modeling decision-making processes [K2A_W09]

Skills:

- 1. It can be used to describe the theoretical knowledge and analysis of the causes and processes and social phenomena and formulate their own opinions and choose the critical data and methods of analysis [K2A_U02]
- 2. He can analyze the causes and processes and social phenomena, formulate opinions on the subject and put a simple hypothesis testing and verifying them $\,$ [K2A_U03]
- 3. He can predict and model complex phenomena involving social processes in the areas of social life using advanced methods and tools in the discipline of management science [K2A_U04]
- 4. Efficiently uses normative systems, standards and rules (legal, professional, ethical), or know how to use them in order to solve specific problems, has expanded the ability for the category of social ties or selected such standards [K2A_U05]
- 5. Has the ability to use their knowledge in various areas and forms, enhanced by a critical analysis of the effectiveness and suitability of applied knowledge [K2A_U06]
- 6. Has the ability to independently propose specific solutions to the problem of the management and implementation procedures to take decisions in this regard [K2A_U07]

Social competencies:

competing tasks - [K2A_K03]

- 2. Is awars of interdisciplinary knowledge and skills needed to solve complex problems of organization and the need to create interdisciplinary teams [K2A K06]

1. He can see depending on cause and effect in achieving the set goals and give the rank of the relevance of alternative or

Assessment methods of study outcomes

Forming Rating:

- a) for the project based on the current progress of the tasks, b) in respect of lectures based on answers to questions concerning the material discussed in the previous lectures.
- -Rating summary:
- a) for the project on the basis of the presentation of the project tasks and answer questions about the design task and the solutions used in the task, b) in respect of lectures: (1) a written examination concerning the content of the lecture, each question is scored on a scale from 0 to 1,, exam is passed after obtaining at least 55% of the points. The exam can be applied after completion of the project (20 to discuss the results of the exam).

Course description

Lecture begins with the presentation of the production flow control substance. The are two main variants of this process: a model niezinformatyzowany and computerized model. Highlighted are the differences between the two models. Presented is the course and the main methods of controlling material flow management at the level of products and components of the computerized version does not. The presented method is material requirements planning (MRP) as the basis for controlling the flow of production at the level of the components of the computerized version. Deals with the problem of integration of computerized variant and not computerized - the integration of MRP - JiT. In class, students design project, according to the guidelines operator, selected production flow control system

Basic bibliography:

- 1. Zarządzanie produkcją, Dwiliński L., , Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2002
- 2. Podstawy zarządzania przepływem materiałów w przykładach, Fertsch M., , Biblioteka logistyka, Wydawnictwo ILiM, Poznań, 2003
- 3. Sterowanie przepływem produkcji, Senger Z., , Wydawnictwo Politechniki Poznańskiej, Poznań, 1998
- 4. Zarządzanie przepływem materiałów, Fertsch M., Gania I., Wydawnictwo Politechniki Poznańskiej, Poznań 2011.
- 5. Podstawy zarządzania produkcją. Ćwiczenia, Kosieradzka A., (red.)., Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2008

Additional bibliography:

 Podstawy zarządzania produkcją. Ćwiczenia, Kosieradzka A., (red.)., Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2008

Result of average student's workload

Activity	Time (working hours)
1. Lecture	15
2. Projects	15
3. Consultation to the project	10
4. Preparation for the project	20
5. Preparation for the exam	10
6. Exam	3
7. Overview of exam	2

Student's workload

Source of workload	hours	ECTS
Total workload	75	3
Contact hours	45	2
Practical activities	30	1